Platinum is a chemical element with the chemical symbol Pt and an atomic number of 78.

Its name is derived from the Spanish term platina, which is literally translated into "little silver". It is a dense, malleable, ductile, precious, gray-white transition metal.

Platinum has six naturally occurring isotopes. It is one of the rarest elements in the Earth's crust and has an average abundance of approximately 5 μg/kg. It is the least reactive metal. It occurs in some nickel and copper ores along with some native deposits, mostly in South Africa, which accounts for 80% of the world production.

As a member of the platinum group of elements, as well as of the group 10 of the periodic table of elements, platinum is generally non-reactive. It exhibits a remarkable resistance to corrosion, even at high temperatures, and as such is considered a noble metal. As a result, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the alluvial sands of various rivers, it was first used by pre-Columbian South American natives to produce artifacts. It was referenced in European writings as early as 16th century, but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it became investigated by scientists.

Platinum is used in catalytic converters, laboratory equipment, electrical contacts and electrodes, platinum resistance thermometers, dentistry equipment, and jewelry. Because only a few hundred tonnes are produced annually, it is a scarce material, and is highly valuable and is a major precious metal commodity. Being a heavy metal, it leads to health issues upon exposure to its salts, but due to its corrosion resistance, it is not as toxic as some metals. Compounds containing platinum, most notably cisplatin, are applied in chemotherapy against certain types of cancer.

As a pure metal, platinum is silver-white in color, lustrous, ductile, and malleable. Platinum is more ductile than gold, silver and copper, thus being the most ductile of pure metals, but gold is still more malleable than platinum. It does not oxidize at any temperature, although it is corroded by halogens, cyanides, sulfur, and caustic alkalis. Platinum is insoluble in hydrochloric and nitric acid, but dissolves in hot aqua regia to form chloroplatinic acid, H2PtCl6.
Platinum's resistance to wear and tarnish is well suited for making fine jewelry. Pure platinum is slightly harder than pure iron. The metal has an excellent resistance to corrosion and high temperature and has stable electrical properties. All of these characteristics have been used for industrial applications.

The most common oxidation states of platinum are +2 and +4. The +1 and +3 oxidation states are less common, and are often stabilized by metal bonding in bimetallic (or polymetallic) species. As is expected, tetracoordinate platinum(II) compounds tend to adopt 16-electron square planar geometries. While elemental platinum is generally unreactive, it dissolves in hot aqua regia to give aqueous chloroplatinic acid (H2PtCl6):

Pt + 4 HNO3 + 6 HCl → H2PtCl6 + 4 NO2 + 4 H2O
As a soft acid, platinum has a great affinity for sulfur, such as on dimethyl sulfoxide (DMSO); numerous DMSO complexes have been reported and care should be taken in the choice of reaction solvent.

Contact Us

Filigree Engraving Shop „Bećart“

Gazi Husref-begova 30, 71000 Sarajevo, Bosna i Hercegovina

+387 62 503 775 (Viber & WhatsApp)

+387 61 245 622,

info@becart.ba

Bank account 3386902296208753 UniCredit Bank

Save
Cookies user preferences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Cookies
Unknown
Accept
Decline
Functional
Tools used to give you more features when navigating on the website, this can include social sharing.
Osano
Accept
Decline
Analytics
Tools used to analyze the data to measure the effectiveness of a website and to understand how it works.
Google Analytics
Accept
Decline